
DOCUMENT RESUME

ED 102 947 IR 001 626

AUTHOR Bork, Alfred
TITLE Student Computer Dialogs Without Special Purpose

Languages.
INSTITUTION California Univ., Irvine. Physics Computer

Development Project.
PUB DATE 2 Jan 75
NOTE 14p.

EDRS PRICE MF-$0.76 HC-$1.58 PLUS POSTAGE
DESCRIPTORS *Computer Assisted Instruction; *Computer Programs;

*Computers; Man Machine Systems; Physics; *Programing
Languages; Time Sharing

IDENTIFIERS FORTRAN; METASYMBOL; Physics Computer Development
Project; University of California at Irvine

ABSTRACT
The phrase "student computer dialogs" refers to

interactive sessions between the student and the computer. Rather
than using programing languages specifically designed for computer
assisted instruction (CAI), existing general purpose languages should
be emphasized in the future development of student computer dialogs,
as the power and flexibility of general purpose languages make their
extension more useful to a larger proportion of computer
installations. Two programing languages have been used at the
University of California at Irvine--METASYMBOL, the assembly language
used on the Xerox Sigma 7, and FORTRAN. A number of small modules
have been written in these two languages, and more are being
developed. Technological advances in hardware may soon lead to
stand-along systems for student computer dialogs, thus making
small-scale programs mote important. An example of one module
developed at Irvine is provided. (DGC)

BESI
0114101.1.

STUDENT COMPUTER DIALOGS WITHOUT FACIAL PURPOSE LANGUAGES

Alfred Bork
Physics Computer Development Project
University of California
Irvine, California 92664

January 2, 1975

Introduction

U S DEPARTMENT OF HEALTH.
EDUCATION WELFARE
NATIONAL INSTITUTE OF

EDUCATION
THIS DOCUMENT HAS BEEN REPRO
DUCED EXACTLY AS RECEIVED FROM
THE PERSON OR ORGANIZATION ORIGIN
ATING IT POINTS Of VIEW OR OPINIONS
STATED DO NOT NECESSARILY REPRE
SENT OFFICIAL NATIONAL INSTITUTE OF
EDUCATION POSITION OR POLICY

(714) 833-6911

By a student computer dialog we mean a "conversation" between

a student and a computer device, possibly a terminal or display.

In such a dialog the computer is "talking" with the student,

either asking questions and waiting for answers, or responding to

requests from the student. This type of usage is sometimes

referred to as computer-assisted instruction or CAI. But, because

of the intrinsically wider connotation of the term, due to the

way computers can be used in instruction, we prefer to call

such interactions dialogs. The model for a student-computer

dialog is what goes on between the student and the instructor

in the instructor's office. We cannot hope to obtain this flexi-

bility with current day computer techniques, with sizable numbers

of students, but we can, experience shows, approach a reasonably

good approximation, particularly if very skilled teachers are

responsible for preparing the student-computer dialogs. In

areas where the computational skills of the computer are important,

we can offer resources not available to the instructor in such

office conversations.

Standard Approac.

A typical way this problem has been attacked in the past is

to develop a special purpose language for preparing such dialogs.

Dozens of such languages have been developed, although few have

2

had wide-scale acceptance. The original language to attain wide

usage was Coursewriter, developed by IBM at Yorktown Heights.

Coursewriter is still in existence both on IBM computers and on

a variety of other systems (such as Hewlett-Packard). Other

examples of such special languages are PLANET, PILOT, and DITRAN.

Perhaps the most extensive language cf this kind ever developed

is TUTOR, used as the basis of the PLATO Project at the University

of Illinois.

Alternate Approach

An alternate to developing special languages is to work

within existing languages and to make extensions to these languages

to make them easier to use in preparing dialogs. There is nothing

new about this approach -- dozens of attempts have taken this or

related directions--but this approach has achieved far less

publicity than the special purpose languages. Indeed a document

I saw recently attempted to define "hardcore CAI" as something

that was written in a special purpose language developed just for

this purpose. This seems to be an unfortunate attitude. The

student rurning the dialog does not necessarily know anything

about the language facility in which the dialog was prepared;

many dialogs currently in use could have been written in a wide

variety of languages including many of the standard all-purpose

languages. So the software involved is not a basis for classificatioi

Advantages exist in working within available languages.

First, these languages exist and survive because they are powerful

languages at least for some purposes., The facilities these

languages include would, in many cases, need to be present in any

3

-3-

ful:!y developed dialog language, and so would have to be dupli-

cated. Thu:, computational facilities such as those in FORTRAN,

ALGOL, or PL/1 would very likely be required in dialogs in physics

and in other areas of science. Some of the special purpose

languages could provide these facilities by allowing "exits" or

hooks to general purpose facilities, and many languages allow

this. But working directly within general purpose languages

gives another way of attaining these necessary facilities.

Another distinct advantage of working with existing languages

is that we can mold the facilities required on pedagogical demand,

rather than through theoretical arguments on language design or

the way things should be taught. Thus, this approach can allow

different authors, teachers from different backgrounds, to create

quite different kinds of learning materials. Then these programs

can compete in-the educational marketplace. New facilities can

be added to meet author demands. Thus, in our case the addition

of graphic capabilities, essential for teaching applications, was

possible with reasonable effort.

Furthermore, some of these general purpose languages allow

access to all the resources of the computer, while special

languages often restrict such resources. Thus, the ability to

use ov(!rlay facilities may not be possible in such special soft-

ware hut this facility or one equivalent to it will be

important for developing very large dialogs. Further, because

there is no 'language," no single language, no fixed pedagogical

style is imposa0 on course authors; existing "CAI" languages

often were developed with a particular pedagogical approach in

-4-

mind, a predetermined view of how to use the computer in learning.

A more general set of facilities does not restrtA the author

with regard to teaching styles but allows individual teachers to

proceed in ways that seem reasonable to them.

There are clearly, however, some disadvantages and problems

in using general-purpose languages for dialogs. The first serious

question is just how we tag the new facilities, needed for an

efficient dialog authoring process, onto an existing language.

The mechanism for doing this in the available language may be

rather clumsy; subroutine calls, for example, are often not

flexible. Furthermore, these extensions may not be at all easy

to transport from one machine to another, and so the movement of

materials to new environments may not be an easy task.

However, these disadvantages will be overcome by developments

in hardware and software in the next few years. At the present,'

I believe, a sufficient amount of good, well-tested material does

not exist in most subject areas. By the time such material is

available the hardware situation will be different, and so the

transport problems will be different.

The Irvine Dialog Approach

As indicated, working with existing powerful languages

allows a great number of variants. For the remainder of this

paper I describe the variants in software and authoring that we

have employed at Irvine in the Physics Computer Development

Project.

First, our critical beginning point is with teaching materials,

produced by competent teachers. The idea is that software develop-

ment does not precede the development of learning sequences, but

follows such development. Thus, competent teachers write the

dialogs first, in a form which is not language-dependent, and

then we develop whatever new software facilities are necessary

for getting those dialogs running. The older facilities developed

for previous programs will typically still be useful, and many

programs will not demand new facilities. But on the other hand,

some programs may require extensive new software. This turning

about of the usual direction (first languages, then courseware)

with special purpose languages serves to emphasize that our

primary purpose is the development of teaching materials, not the

development of languages.

Furthermore, as indicated above, we wanted to make use of

all the facilities on a general purpose, multi-language, timesharing

computer. That is, we did not want to restrict ourselves to a

subset of the possibilities on the machine.

In view of these objectives we have worked at Irvine in two

general purpose languages, producing dialogs which are combinations

of these two languages. The first, and perhaps most important,

language is M;TASYMBOL, the assembly language available on the

Xerox Sigma 7 we use. The second is the well-known general

purpose scientific language, FORTRAN.

The extension mechanism that we use in the assembly language

is the macro or, as referred to on the Sigma 7, procedure. Thus,

a typical segment of code for a dialog will consist of macro

calls. All of these have English language command names, and in

general our policy is to have few arguments in the macro. New

macros are written only in response to pedagogical demand.

6

We can get a better idea of what this looks like if I show

a fragment of a program, explaining what the statements mean.

I will begin with the dialog as formulated by the authors.

The example I use was generated at a workshop at Irvine for

University of California physics faculty from other campuses.

It was a group activity (involving Richard Ballard, Irvine;

Sun Yiu Fung, Riverside; Peter Geisler, Davis; Bruce Rosenblum,

Santa Cruz; and Robert Eisberg, Santa Barbara) intended to illus-

trate the process of creating dialogs. We began with a flowchart,

a fragment of which is produced in a much reduced version here.

14. t&m.tig4

itsiaav ?Airsubt-r...4

F

BEST COPY ME

,(13 CAMPA04,0 LA Caftolaftewfto lat4 a., 93) /WA

41.

Wilk& L. h ;04 H&TEILS) amt. Eo

iSed:a-

ksul°,4
that wt noe÷wid,rt. 4orsa.,

FMS A
AAW1-

Oft4.0041

giJoset

easellm.B ps)f-Nt

AL, I

-07

sh.43 et` Walk tAletAg
10*

Tle. B 4.4jeamr S. Sekrajrat 1+6 al vow fisP ktp #40/ tit IrirciLevrow:
el#Cit.

ille,"0..V.X"ft I% 444.1:07rairivrea.

COP.3012,

4704. caw.
4-6 /11444.040trzwil

a- OA.% tz-

es446%,

TNIsp.4.- Po- I 1. "
'14.44 dyr4hb.

tevegf fini-1, ay.&

8

Note that the authors produced only rough sketches of the

drawings required. The flowchart then went to a student programmer;

sometimes a secretary will also play an intermediate role, entering

much of the program directly from the flowchart.

The following segment of code corresponds to the flowcnart

segment. The macro calls are apparent; most of the macros have

English language names, and their functions in most cases are

obvious, particularly If you refer to the flowchart. Thus, WRITE

produces terminal output, DELAY adds timed delays, SKIP skips

lines on the screen, RESET makes a variable zero, CURSOR turns

on the crosshairs for graphic input, BUMP increments a variable.

Some of the macros are particularly concerned with graphics;

WINDOW determines the active area of the screen, SCALE establishes

user coordinates for this area, CURVE draws a curve, ARROW draws

an arrow.

9

'9.000
0.000
11C00
12.000
5300
34.000
45.000
36.000
17.000
38.000 CUES2
39.000
40.000
'4400
-29000
43.000
44.000
45.000
46.000
47.000
48.000
49.000
50.000
51.000
520000
53.000
549000
55.000
56.000
57.000
58.000
59.000
60.000
61.000
52.000
63.000
64.000
65.000
66.000
67.000
66.000
69.000
70.000
71.000
72.000
73.000
74.000-
75.000
76.000
77.000
780.00
79.000
80.000
.81.000
82.000
83.000

MEDIUM

SWITCH
STRK1

STRK2

STRK3

GREAT

FINE4
SKIPIT

SKIPIT1

NEWPAGE
SKIP
TO
TO
WRITE
WRITE
SKIP
WRITE
WRITE
INBELL
NOBLANK
SUBALL 19140,9

DELETEALL
SUBALL
IF IR*R1sSwITCH
SUBALL 'Fill'oR 2'

-9-

2
SKIPIT1.(eADAG.0)
MEDIUMstBAD.LT3)
tyouttvE HAD GUITE'A 8/T OF TROUBLE. LET''S SEE'

IIF IT HAS CLEARED UPI
2
'GIVE~ CHARGES c1 AND 02 SEPARATED BY A DISTANCE,
'''R '', THE FORCE IS PREIPORTIEJNAL TO

BEST COPY AiAIUSIE

10

HHHHHHHH'

IF (1C1Q2/P 21,0pC1/P 21),GREAT
SWITCH 8ACi(STRK1STRK2,STPK3.STPK3)
wRITE 'YOU NAVE ALL THE. cemP6NENTS, THE FORCE IS pRopeRTIeNALI

WRITE 'TO EACH CHARGF AND INVERSELY PROPORTIONAL Tel

WRITE 'THE SQUARE eF THE SEPARATION,
DELAY 2
OUT !TRY ONCE MORE TO'
WRITE 'TO TELL US WHAT EXPRESSION THF FORCE IS'
-WRITE ,PROPORTIONAL TO.I
SUMP BAD
TO CUES2
BUMP BAD
WRITE 'THE FORCE IS pRopeRTIINAL TO 0102/R 21,SKip/T

'STILL TROUBLE_. PERHAPS YOU SHOULD CONSULT A I

lPfiYSICS FACULTY MEMBER, OR ANOTHER STUDENT.'
BAD
SKIPIT
FINE4(BAUsLis3)
Ofeu.SEEM Te HAVE THE IDEA NOWO,SKIPIT
'FINE'

ARITE
WRITE
BUMP
TO
TO

WRITE
SKIP
DELA!,
NENPAGE
SKIP
WRITE
WRITE
DELAY
SKIP
WRITE
WRITE
WITE
SKIP
DELAY
WRITE
wRITE
WRITE
RESET
SKIP
DELAY

2

5
THE FROPORTIeNALITY CoNSTANT DEPENDS ON THE UNITS'
!CHOSEN, IN ON COert. SET OF UNITS, Si OR H10).1
1

1. .01 0E9
F

4 P/ E0 R 2'

2
twhERE PI.3.14159...,CHARGF IS IN COULOMBS,'
'DISTANCES IS IN rETEPse AND E0, CALLED,
IEPSILON.NAUGHTs IS 9.0.10 9 NEWTONS/COULOMBS,!
BAD2

2

10

qe

-10- BEST COPY AVAILABLE

84.000
6500
86.000
87.000
88.000
89.000
90.000
91.000

NEWPAGE
WRITE
DELAY
WRITE
DELAY
WINDOW
SCALE
FORTRAN

'NEXT ON euR AGENDA IS THE DIRECTION OF THE FORCE.'
1

''ERE''S A POSITIVELY CHARGED PARTICLE, 'Iwo
2

(FS121,FS100),(FS161,FS'2.90),BOX
(FS00,,FSI321),(FSIO.1,FS'2C.0)
PLACE,(28Z9)

92.000 CURVE (X,Y,30)
93.000 SETPUINT (F512.751.Fs11.1751)
94.000 OUT IA1
95.000 DELAY 2
96.000 'WRITE 'AND ANOTHER, ALSO POSITIVE'
97.000 DELAY 1

98.000 FORTRAN PLACES(Z10,Z11)
99.000 CURVE (x,Y,30)
00.000 SETPOINT (F614951,FS'2.375,)
01.000 OUT obi

02.000 DELAY 3

03.000 SKIP
04.000 WRITE 'THE FORCE ON 11B'' IS A VECTOR QUANTITY.'
05.000 SKIP
D6000 WRITE 'PLEASE INDICATE ITS NpEcTIeN ey PLACING'
37.000 .WRITE 'THE CROSSHAI4s IN A PROPER DIRECTION,
)8.000 wRITE fRELATIVE TO THE-CENTER OF THE CHARGE ''B'''
)9.000 WRITE 'AT ',PI,'
10.000 DELAY 3
11.000 OUT ' POINT WITH THE CROSSHAIRS TO THE TIP'
12.000 wRITC 'OF THE ARROW AND THEN TYPE A 11129tof
13.000 CURSOR CURSOR ArB
14.000 FORTRAN ACCERT,(A/B,C,O,J)
15.000 LW,1
16.000 GACR
17.000

B

B
GACRA1
RIGHT .

18.000 B CLUMSY
19.000 B REVERSE
?0.000 TO CeNTIK,(BAD2,GT,0)
?1.000 BAC2
!2.000 WRITE THAT DOESN''T SEEM RIGHT, TRY AGAINI,CJRSOR
730000 RIGHT WRITE 'LOOKS GOOD'
?4.000 RESET OAD2
?5.000 TO CSNTIN
74.000 REVERSE 'NO THE FORCE IS I

?7.000 PRINT (F'EPEAT,5,1RE;-uLSIvEt)
=.8.000 OUT I NOT ATTRAcTIvE
:9.000-
30.000 CLUMSY

WRITE
KRITE

/TRY AGAINI,CURS54
'Y WIRE A LITTLE CARELESS, BUT I AsstdmE YOU '

31.000 WRITE 'I-.EAN AN ARROW IN THIS DIRECTIoN.1
32.000 RESET 6A02
330Q0 CeNTIN DELAY 2

34.000 ARROw (FS'24.1,FSI14.0),(FS1266341.FS'158371)
35400 WRITE IT1-E FORCE IS AL9'G THE LINE .JOINING THE'
16.000 WRITE /TwO PARTICLESI,SECT2
1700 A DATA 0
38.000 DATA 0

Note that FORTRAN is also used in the preparation of dialogs.

FORTRAN subroutines are callable from the macro-based portions of

the programs, and some of the facilities of the .acros are callable

from FORTRAN. The primary use of FORTRAN is for calculation, the

area in which it is particularly strong. We can make extensive

use, too, of the available FORTRAN subroutine libraries. For

example, a number of our Irvine dialogs include programs from the

Scientific Subroutine Package, a common collection available on

most sizable machines.

We believe that this combination of macros plus FORTRAN

allows us the advantages mentioned above, without our developing

a special purpose language. To some extent the dialog commands

are a special purpose language (the term "language" does not have

precise meaning), but the emphasis is very different from what is

usual in language construction. The primary difference is that

it is a growing set of facilities, growing by pedagogical demand

rather than an entity defined in advance. Further, we do not

assume that the teacher will be familiar with these language

facilities.

Future

First, the most obvious comment to make about the future

is that the Irvine dialog facilities are always developing. We

are at the moment, for example, writing an elaborate new set

of macros having to do with symbol manipulation and parsing

of -,omplicated expressions involving complex numbers and operators.

These macros like others that have been developed are being coded

because they are necessary for the dialogs currently under develop-

ment at Irvine.

12

-12-

Since we are working in a general purpose environment, we

can use other software facilities in he machine besides those

already employed. The most promising, particularly for some of

our new applications which combine computer management along

with computer dialogs, are the full database facilities available.

These, like any other software in the machine, can be called

within macro-based code, and so programs can use this database

facility in rapidly developing new facilities in this area.

We are planning such development at this time, with emphasis on

course management.

If we look a little further into the future, we can see other

exciting possibilities. While we are currently working in an

assembly language, there is increasing interest in system

developme;lt work within a systems programming language. While

valid questions can be raised about the efficiency of code produced

by such languages, and the practicality of this approach, it is

an interesting one to explore for the future. Hence, one might

see the possibility of developing facilities like those described

for the Irvine dialogs within a high level system programming

language, perhaps as a structural addition to the language.

Other languages, as indicated, could still be used. If a single

system programming language gains general acceptance, then this

might ease the process of transferability; but this possibility

does not look likely.

A more likely development for the future of educational

computing, perhaps, is the rise of widespread use of stand-alone

systems, displays having within them most of the processing

13

capabilities that they will usually need. These systems, unlike

timesharing systems, will be used by individual students. So if

a particular machine breaks down, only that student will be

affected, and not the hundreds of students who might be affected

in a timesharing environment. There are also great advantages

with this type of machine with regard to graphic display capabilities.

If such machines become common in the educational evironment

in a period within five to ten years from now, the task of pre-

paring and testing the interactive software and the dialogs will

probably still go on in the larger timesharing systems that we

are already developing. Hence, software systems such as I described

may still play a role in generating the programs for the small

machines.

Conclusions

I presented here an alternate to the development of a special

purpose language for student computer dialogs and examined possibilitie

for the future. We believe a system of this kind is effective

for generating highly interactive material valuable for students

in the learning process.

The work described here is supported by the National Science

Foundation and the University of California. A bibliography and

documentation of the underlying software and of individual dialogs

are available on request.

14

